Memristor for bio-inspired computing: nonlinear circuits and mathematical models

Fernando CORINTO fernando.corinto@polito.it

Politecnico di Torino (Italy)

MemTDAC Workshop - Vienna - 22/01/2014

Outline

Motivation

- Memristor modeling and nonlinear dynamics
 - Model comparison
 - Influence on initial conditions
 - the SIMPLEST (passive) memristor circuit
- Conclusions

DATE workshop: Dresden, March 28, 2014 4th Memristor Symposium, ND (USA), July 28, 2014

Neuromorphic circuits

• The Human Brain Project in EU plans to use a supercomputer to recreate everything known about the human brain — a hugely ambitious goal! •Leading neuroscientists in the US are now focussed on understanding how the brain works through the **Brain Activity Map** (BAM) project, but it's difficult to peer deeply enough into a brain to map the activity of every neuron. Because zebrafish embryos are transparent, the task is easier.

• <u>Understand how neurons that make up the brain</u> carry out their functions.

Neuromorphic circuits **MIT Technology Review**

So the race is on to develop a different kind of chip that more accurately mimics the way the brain works. So-called **neuromorphic chips must be built from devices that behave like neurons** – in other words they transmit and respond to information sent in spikes rather than in a continously varying voltage.

One reason the brain is so **power efficient** is that neural spikes charge only a small fraction of a neuron as they travel. By contrast, conventional chips keep each and every transmission line at a certain voltage all the time.

Clearly, recent advancements in **memristor technology** and **spintronics** are making possible entirely new ways to design chips. However, **there is a long way to go** before synthetic systems can begin to match the capability of natural ones.

INVITED PAPER

Beyond Moore's Law

Science and Engineering Beyond Moore's Law

Device	Entity	Properties		
Device	Enuly	Control Variable	State Variable	Output Variable
FET – Novel Materials (III-V, Ge, carbon-based, etc.)	Electron	Charge	Charge	Charge
SpinFET	Electron	Charge	Spin	Charge
Spin-Torque	Electron	Spin	Spin	Charge
Spin-Wave	Electron	Spin Waves	Spin	Charge Photon
Tunneling Transistor	Electron	Charge	Charge	Charge
Molecular switch	Electron or Atoms	Charge	Charge	Charge
NEMS	Atoms	Charge	Position	Charge
Atomic Switch	Atoms	Charge	Position	Electron
Memristor	Atoms	Charge	Charge,	Electron
Magnetic Cellular Automata	FM Domain	Magnetic dipole	Spin	FM Domain
Moving Domain Wall	FM Domain	Magnetic Dipole	Spin	FM Domain
Multi-Ferroic Tunnel Junction	FM Domain	Spin	Charge	Electron
Optical or Plasmonics	Atoms or Electrons	Charge	Optical Density	Photons
Thermal Transistor	Phonons	Thermal Energy	Temperature	Phonons

Taxonomy for Candidate Information Processing Devices

Breakthrough in Memristor

- non-volatile memories \rightarrow low-power, high-density
- neuromorphic systems \rightarrow Memristor mimics biological synapse
 - As in a living creature the weight of a synapse is adapted by the ionic flow through it, so the conductance of a memristor is adjusted by the flux across or the charge through it depending on its controlling source.

• novel computer architectures \rightarrow memory and process coexist

 Memristor will play a fundamental role in the realization of novel neuromorphic computing architectures merging memory and computation. This fundamental step will begin to bridge the main divide between biological computation and traditional computation, because memristor permits to bring data close to computation (the way biological systems do) and they use very little power to store that information.

Fundamentals of memristor

- non-volatile memories
- neuromorphic systems
- computer architectures

- \rightarrow low-power, high-density
 - \rightarrow memristors mimics synapses
 - \rightarrow $\,$ memory and processing coexist $\,$

Important issues:

• full understanding of nonlinear dynamics

Memristor modeling and Nonlinear dynamics

What is a MEMRISTOR?

Memristor (L. O. Chua, 1971)

Charge-controlled "ideal" memristor $\varphi(t) = f(q(t)) \Rightarrow v(t) = M(q(t)) i(t)$ (memristance) $M(q(t)) = \frac{d f(q)}{dq}$

General memristive one-port (Chua and Kang, 1976)

$$v(t) = M(\mathbf{w}(t)) i(t), \ \mathbf{w} \in \mathbb{R}^n$$

$$\frac{d \mathbf{w}(t)}{dt} = h(\mathbf{w}(t), i(t), t)$$

Main properties:

1

Recently, "Memristors" and "Memristive Devices" have been used interchangeably

Image: Main properties.Image: Main propert

General memristive one-port (Chua and Kang, 1976)

HP Memristor (S. Williams et al, 2008)

HP Memristor (S. Williams et al, 2008)

14

Memristor mathematical model (HP model)

First memristor model

$$\begin{pmatrix} \frac{dw(t)}{dt} = \mu \frac{R_{on} \frac{w(t)}{D} i(t)}{w(t)} \\ v(t) = \left(R_{on} \frac{w(t)}{D} + R_{off} \left(1 - \frac{w(t)}{D} \right) \right) i(t)$$

Expression for w(t) as function of q(t):

$$w(t) = w(t_0) + \mu \frac{R_{on}}{D}(q(t) - q(t_0))$$

For $R_{on} \ll R_{off}$ memristance expressed by

$$M(q(t)) = R_{off} \left(1 - \frac{w(t_0)}{D} - \frac{\mu R_{on}}{D^2} (q(t) - q(t_0)) \right)$$

15

Williams et al. "The missing memristor found", Nature, vol. 453, pp. 80-83 2008 🚎 💦 🚛 🖕 🚘 👘 🖕

Memristor mathematical model

$$i(t) = W(x(t)) v(t)$$

 $W(x(t)) = \frac{G_{on}G_{off}}{G_{on} - \Delta Gx(t)}$ memductance

with $\Delta G = G_{on} - G_{off}$, where G_{on} and G_{off} indicate the device memductance respectively in the fully-conductive and fully-insulating state (i.e. as x(t) sets to 1 and 0 respectively),

$$\frac{dx(t)}{dt} = \frac{\eta}{i_0} W(x(t)) v(t) F(x(t), \eta v(t), p)$$

window function

Memristor mathematical model

to account for nonlinear effects on the ionic transport $(p \in \mathbf{N}_+ \text{ modulates the degree of such nonlinearities});$ to impose system-dependent boundary conditions.

$$\begin{array}{c}
1 \\
0.8 \\
0.6 \\
0.4 \\
0.2 \\
0 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.5 \\
0.$$

$$F_J(x,p) = 1 - (2x-1)^{2p} \quad \forall \eta v$$

$$F_B(x, \eta v, p) = \begin{cases} 1 - x^{2p} & \eta v > 0, \\ 1 - (x - 1)^{2p} & \eta v \le 0. \end{cases}$$

$$F(x, v) = \begin{cases} 1 \text{ if } C_1 \text{ holds,} \\ 0 \text{ if } C_2 \text{ or } C_3 \text{ holds.} \end{cases}$$

$$C_1 = \{ x \in (0, 1) \text{ or } (x = 0 \text{ and } v > v_{th,0}) \\ \text{ or } (x = 1 \text{ and } v < -v_{th,1}) \},$$

$$C_2 = \{ x = 0 \text{ and } v \le v_{th,0} \},$$

$$C_3 = \{ x = 1 \text{ and } v \ge -v_{th,1} \},\$$

F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.–I, 2012, DOI: 10.1109/TCSI.2012.2190563

Memristor mathematical model Boundary Condition-based Model (BCM)

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," *Nature*, vol. 453, pp. 80-83, 2008.

It may be theoretically demonstrated (see Proposition 3 in [1]) that boundary conditions may be tuned so as to obtain either singlevalued or multi-valued state-flux characteristics.

Figure 8. Memductance-flux characteristics for the memristor modeled by (1)-(2) $(x(0) = 0.1, G_{on} = 10^{-2}S)$, using proposed window (39) and voltage source (6) with $\beta = 0.01$. Blue curve: $v_0 = 1V$, $G_{on} G_{off}^{-1} = 60$, $v_{th} = 0V$ (note the similarity to red curve in Fig. 4). Black curve: $v_0 = 2V$, $G_{on} G_{off}^{-1} = 25$, $v_{th} = 0V$. Red curve: $v_0 = 1V$, $G_{on} G_{off}^{-1} = 60$, $v_{th} = 0.5v_0 V$ (note the similarity to red curve in Fig. 2). For each case, points $P' = (\varphi(t_{\alpha,1}), G_{on})$ and $Q' = (\varphi(t_{\beta}), G_{on})$ are highlighted to show whether or not one of conditions for single-valuedness, i.e. (45), is fulfilled. Here $P' \equiv Q'$ for the red curve only.

Memristor mathematical model Boundary Condition-based Model (BCM)

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," *Nature*, vol. 453, pp. 80-83, 2008.

It may be theoretically demonstrated (see Proposition 3 in [1]) that boundary conditions may be tuned so as to obtain either singlevalued or multi-valued state-flux characteristics.

Figure 9. Current-voltage characteristics corresponding to the memductanceflux relations of Fig. 8. Blue curve is similar to red curve in Fig. 5 and to Fig. 3(a) from [3]. Black curve is similar to Fig. 3(b) from [3]. Red curve is similar to red curve in Fig. 3 and to Fig. 3(c) from [3].

F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.–I, 2012, DOI: 10.1109/TCSI.2012.2190563

Memristor mathematical model Boundary Condition-based Model (BCM)

Table I

CAPABILITY OF EMULATION OF VARIOUS MEMRISTOR BEHAVIORS FROM [3] FOR VARIOUS MODELS PROPOSED IN LITERATURE.

Memristor $i - v$	Linear	Joglekar's	Biolek's	BCM
response from [3]				
Fig. 2(b) in [3]		\checkmark	\checkmark	Fig. 6
Fig. 2(c) in [3]				Fig. 7
Fig. 3(a) in [3]	×	×		Fig. 9 (blue)
Fig. 3(b) in [3]	×	×		Fig. 9 (black)
Fig. 3(c) in [3]	×	\checkmark	×	Fig. 9 (red)

BCM model captures the i – v response of other memristor nanostructures as well (see [1])

F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.–I, 2012, DOI: 10.1109/TCSI.2012.2190563

Memristor Model Comparison

non- linear circuit (appearance of the chaotic attractor).

Memristor modeling

Messagge to take home: Reliable mathematical and physicallybased circuit models are fundamental to develop neuromorphic hybrid systems!

 $\begin{array}{ll} \text{Electrons:} & \nabla \cdot (-en(x) \ \mu_n \nabla \varphi_n(x)) = 0 \\ \text{Holes:} & \nabla \cdot (ep(x) \ \mu_p \nabla \varphi_p(x)) = 0 \\ \text{Ions:} & -\nabla \cdot (-eD_i \nabla N_D(x) - eN_D(x) \ \mu_i \ \mathsf{E}_0 \text{sinh}[\nabla \varphi(x)/\mathsf{E}_0]) = e \ \partial N_D(x)/\partial t \\ \text{Poisson:} & -\varepsilon \varepsilon_0 \Delta \varphi(x) = e[p(x) - n(x) + f_D(x) \ N_D(x) - f_A(x) \ N_A] \end{array}$

$$v(t) = M(x, i)i$$

$$\frac{dx(t)}{dt} = f(x, i)$$

$$x(0) = x_0 \in \mathbb{R}^n$$

Memristor modeling and

Nonlinear dynamics

Analysis of the memristive current-voltage behavior, i.e. make a rigorous classification of all possible current-voltage characteristics for a sine-wave voltage-driven memristive element on the basis of amplitude, angular <u>frequency</u> and <u>time history</u> of the oscillating voltage waveform across the device

Memristor: The role of Initial⁴

Appl Phys A (2011) 102: 765-783 DOI 10.1007/s00339-011-6264-9

Resistance switching memories are memristors

Analysis of the memr behavior, i.e. make a of all possible currentfor a sine-wave volta element on the basis of amplitude, angular <u>frequency</u> and <u>time history</u> of oscillating voltage waveform across the device

Leon Chua

Abstract All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive "fingerprint" characterized by a pinched hysteresis loop confined to the first and the third quadrants of the v-i plane whose contour shape in general changes with both the amplitude and frequency of any periodic "sinewave-like" input voltage source, or current source. In par-

the

voltage-controlled memristor

 $\overset{+}{\boldsymbol{v}} \overset{i}{\boldsymbol{b}} \overset{(\mathfrak{f})}{\boldsymbol{b}}$ (a) $q(\varphi) = b \varphi + \frac{a-b}{2} \left(|\varphi + \varphi_c| - |\varphi - \varphi_c| \right)$ a > b > 0 $e(t) = E\sin(\omega t)$ Let us set $t_0=0$ for simplicity.

$$\begin{split} \varphi(t) &= \varphi(0) + \frac{E}{\omega} \left[1 - \cos(\omega t) \right] = \varphi(0) + \frac{2E}{\omega} \sin^2\left(\frac{\omega t}{2}\right) \\ q(t) &= \begin{cases} b\varphi(0) + \frac{2Eb}{\omega} \sin^2(\frac{\omega t}{2}) + a - b & \forall t : \varphi(t) \ge \varphi_c, \\ a\varphi(0) + \frac{2Ea}{\omega} \sin^2(\frac{\omega t}{2}) & \forall t : |\varphi(t)| < \varphi_c, \\ b\varphi(0) + \frac{2Eb}{\omega} \sin^2(\frac{\omega t}{2}) + b - a & \forall t : \varphi(t) \le -\varphi_c \end{cases} \\ i(t) &= \begin{cases} be(t) & \forall t : |\varphi(t)| \ge \varphi_c, \\ ae(t) & \forall t : |\varphi(t)| < \varphi_c, \end{cases} \\ i(t) &= \begin{cases} \varphi(0) \le \varphi(t) \le \varphi(0) + \frac{2E}{\omega}, \end{cases} \\ \varphi(0) \le \varphi(t) \le \varphi(0) + \frac{2E}{\omega}, \end{cases} \\ 0 &< \frac{E}{\omega} < \varphi_c \qquad \varphi_c \le \frac{E}{\omega} < 2\varphi_c \qquad \frac{E}{\omega} \ge 2\varphi_c \end{cases} \\ several cases by varing \varphi(0) \end{split}$$

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resistive behavior
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior	Ι		
$\varphi(0) \ge \varphi_c$	highly-resistive behavior			
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$			
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie v 4	1		(a)
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie and cw rotation for -2 1 $2a$ $2a$	b 3a j		v_{th}
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, w -4 8 8.1 8.2 63 8.4 0.01	8.5 8.6 t	8.7 8.8	8.9 9
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive b 🕆 🗘	0	8	
$\varphi(0) = -\varphi_c$	limit-subcase 2, w -0.01 8 8.1 8.2 8.3 84	8.5 8.6	8.7 8.8	8.9 9
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie and ccw rotation		1 2b	2a (c)
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie v -0.01 -2 $-1.5 - v_{th}$ -1 -0.5	0 0.5	1 <i>v</i> _{th}	1.5 2
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$			
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior			

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resistive behavior
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior	
$\varphi(0) \ge \varphi_c$	highly-resistive behavior	
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$	
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$	
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with e and cw rotation for $v > 1$ a $\frac{4}{2}$	v_{th}
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-r $-\frac{2}{4}$ 8.1 62 8.3 8.4	8.5 8.6 8.7 8.8 8.9 9 t
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior $\sim 0^{0.01}$	(b)
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-r 8 8.1 8.2 8.3 84	8.5 8.6 8.7 8.8 8.9 9
	0.01	
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with $e^{-0.01}$ and ccw rotation for $v > -2^{t-v_{th}} -1.5 -1 -0.5$	2 (c) 0 0.5 1 1.5 v _{th} 72
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$	
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$	
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior	

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resistive behavior
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior	
$\varphi(0) \ge \varphi_c$	highly-resistive behavior	
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$	
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$	
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v > 0$	
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resis	v_{th}
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior 48 8.1 8.2 8.3	8.4 8.5 8.6 8.7 8.8 8.9 9
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resis 0.01	
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extended and ccw rotation for $v > 0$	8.4 8.5 8.6 8.7 8.8 8.9 9 t 1a
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rc $^{\circ}$ 0 4a 4a	
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended and ccw rotation for $v > 0$	-0.5 0 0.5 1 v_{th} 1.5 2
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior	

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resistive behavior
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior	
$\varphi(0) \ge \varphi_c$	highly-resistive behavior	
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	atypical bow-tie with extended b-slope side and cw rotation for $v > 0$	
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v > 0$	
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	atypical bow-tie with extend and cw rotation for $v > 0$	
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 1, weakly-resisti	8.4 8.5 8.6 8.7 8.8 8.9 9
$-\varphi_c < \varphi(0) < \varphi_c - \frac{2E}{\omega}$	weakly-resistive behavior	
$\varphi(0) = -\varphi_c$	limit-subcase 2, weakly-resisti 0.01	8.4 8.5 8.6 8.7 8.8 8.9 9 2a 2a 1a 1b
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	atypical bow-tie with extend -0.01 and ccw rotation for $v > 0$ -2 -1.5 -1	-0.5 0 0.5 1 1.5 2
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$	
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v > 0$	
$\varphi(0) \le -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior	

Clenge

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c$	a typical bow-tie with extended b-slope side and cw rotation for v > 0
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$-\varphi_c < \varphi(0) < \varphi_c - \frac{E}{\omega}$	a typical bow-tie with extended a-slope side and cw rotation for v > 0
$arphi(0)=-arphi_c$	the only limit-case for $\frac{E}{\omega} = \varphi_c$, weakly-resistive behavior
$\varphi(0) = -\varphi_c$	limit-subcase 1 for $\frac{E}{\omega} \neq \varphi_c$, a typical bow-tie with extended a-slope side and cw rotation for v > 0
$-\frac{E}{\omega} < \varphi(0) < -\varphi_c$	cut a typical bow-tie with extended a-slope side and cw rotation for v > 0
$\varphi(0) = -\frac{E}{\omega}$	limit-subcase 2 for $\frac{E}{\omega} \neq \varphi_c$, nonlinearly-resistive behavior
$\varphi_c - 2\frac{E}{\omega} < \varphi(0) < -\frac{E}{\omega}$	cut a typical bow-tie with extended a-slope side and ccw rotation for v > 0
$\varphi(0) = \varphi_c - 2\frac{E}{\omega}$	limit-subcase 3 for $\frac{E}{\omega} \neq \varphi_c$, atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < \varphi_c - 2\frac{E}{\omega}$	a typical bow-tie with extended a-slope side and ccw rotation for v > 0
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	classical bow-tie with ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	a typical bow-tie with extended b-slope side and ccw rotation for v > 0
$\varphi(0) \le -\overline{\varphi_c} - \frac{2E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior
$\varphi(0) \ge \varphi_c$	highly-resistive behavior
$-\varphi_c < \varphi(0) < \varphi_c$	a typical bow-tie with extended b-slope side and cw rotation for v>0
$\varphi(0) = -\varphi_c$	limit-subcase 1 for $\frac{E}{\omega} = 2 \varphi_c$, classical bow-tie with cw rotation for $v > 0$
$-\frac{E}{\omega} = -2\varphi_c < \varphi(0) < \varphi_c - \frac{E}{\omega} = -\varphi_c$	cut atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0) = -\frac{E}{\omega} = -2\varphi_c$	limit-subcase 2 for $\frac{E}{\omega} = 2 \varphi_c$, nonlinearly-resistive behavior
$-\varphi_c - \frac{E}{\omega} = -3\varphi_c < \varphi(0) < -\frac{E}{\omega} = -2\varphi_c$	cut atypical bow-tie with extended a-slope side and ccw rotation for $v > 0$
$\varphi(0) = \varphi_c - \frac{2E}{\omega} = -3\varphi_c$	limit-subcase 3 for $\frac{E}{\omega} = 2 \varphi_c$, classical bow-tie with ccw rotation for $v > 0$
$arphi(0)=-arphi_c$	limit-subcase 1 for $\frac{E}{\omega} \neq 2 \varphi_c$, atypical bow-tie with extended b-slope side and cw rotation for $v > 0$
$\varphi_c - \frac{E}{\omega} < \varphi(0) < -\varphi_c$	cut a typical bow-tie with extended $b\mbox{-slope}$ side and cw rotation for v>0
$\varphi(0) = \varphi_c - \frac{E}{\omega}$	cut classical bow-tie, cw rotation for $v>0$
$-\frac{E}{\omega} < \varphi(0) < \varphi_c - \frac{E}{\omega}$	cut a typical bow-tie with extended a-slope side and cw rotation for v>0
$\varphi(0) = -\frac{E}{\omega}$	limit-subcase 2 for $\frac{E}{\omega} \neq 2\varphi_c$, nonlinearly-resistive behavior
$-\varphi_c - \frac{E}{\omega} < \varphi(0) < -\frac{E}{\omega}$	cut a typical bow-tie with extended a-slope side and ccw rotation for v > 0
$\varphi(0) = -\varphi_c - \frac{E}{\omega}$	cut classical bow-tie with ccw rotation for $v>0$
$\varphi_c - \frac{2E}{\omega} < \varphi(0) < -\varphi_c - \frac{E}{\omega}$	cut a typical bow-tie with extended $b\mbox{-slope}$ side, ccw rotation for v>0
$\varphi(0) = \varphi_c - \frac{2E}{\omega}$	limit-subcase 3 for $\frac{E}{\omega} \neq 2 \varphi_c$, a typical bowtie with extended <i>b</i> -slope side, ccw rotation for $v > 0$
$-\varphi_c - \frac{2E}{\omega} < \varphi(0) < \varphi_c - 2\frac{E}{\omega}$	a typical bow-tie with extended b-slope side and ccw rotation for v > 0
$\varphi(0) \leq -\varphi_c - \frac{2E}{\omega}$	highly-resistive behavior

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Advances in Neuromorphic Memristor Science

and Applications

Elenape

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Advances in Neuromorphic Memristor Science

and Applications

Elenager

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Advances in Neuromorphic Memristor Science and Applications

Elenge

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

27

Advances in Neuromorphic Memristor Science

and Applications

Elenager

Memristor: The role of nonlinear dynamics

Messagge to take home: Be carefull in applications! The i-v curve observed in memristor devices depends on the INPUT and the INITIAL CONDITION as well.

$$v(t) = M(x, i)i$$
$$\frac{dx(t)}{dt} = f(x, i)$$
$$x(0) = x_0 \in \mathbb{R}^n$$

Memristor oscillators

Corinto, Ascoli and Gilli "Nonlinear dynamics of memristor oscillators", IEEE Trans. on Circuits and

Systems-I, vol. 58, no. 6, pp. 1323-1336, 2011

$$i_m = W(\varphi_m)v = \frac{dq_m(\varphi_m)}{d\varphi_m}\frac{d\varphi_m}{dt}$$

 $W(\varphi_m)$: memory conductance

Memristor oscillator

With $R_1 < 0$ let

$$\alpha = C_1^{-1}, \beta = -R_1 L_1^{-1}, \xi = L_1^{-1}, \quad x_1 = \hat{\varphi}_1, \quad x_2 = \tilde{q}_1$$

State equations are:

$$\begin{cases} \frac{d}{dt}x_1 = \alpha x_2 - \alpha q_m(x_1), \\ \frac{d}{dt}x_2 = -\xi x_1 + \beta x_2 \end{cases}$$

where

$$q_m(x_1) = bx_1 + (a - b)n(x_1), \qquad n(x_1) = \frac{1}{2}(|x_1 + 1| - |x_1 - 1|)$$

Memristor oscillators

Corinto, Ascoli and Gilli "Nonlinear dynamics of memristor oscillators", IEEE Trans. on Circuits and

Systems-I, vol. 58, no. 6, pp. 1323-1336, 2011

Isoline Hb(a, b) = 0 of the surface for $\alpha = 1.25$ and $\beta = \xi = 1$ (blue curve)

In blue: isoline point (a, b) = (0.5568, 1.5)

Memristor chaotic circuits

and Syst.-I, 2012, DOI: 10.1109/TCSI.2012.2190563

anti – parallel combination of memristive elements

 x_1

 $\times 10^{4}$

 x_1

x 10⁴

31

Memristor-based Hodgkin-Huxley circuit

Intracellular medium Table 3. Symbol and relevant equations defining the *Potassium Ion-Channel Memristor*.

Table 4. Symbol and relevant equations defining the *Sodium Ion-Channel Memristor*.

International Journal of Bifurcation and Chaos, Vol. 22, No. 3 (2012) 1230011 (48 pages) © World Scientific Publishing Company DOI: 10.1142/S021812741230011X

HODGKIN–HUXLEY AXON IS MADE OF MEMRISTORS

LEON CHUA VALERY SBITNEV HYONGSUK KIM

Memristor-based Hodgkin-Huxley circuit

Memristor-based neural circuits

Sung-Mo, "Steve" Kang

Fernando Corinto

Fig. 2. Novel implementation of a memristor based on a special class of (passive) nonlinear resistive two-port connected to a nonlinear dynamic one-port.

Fig. 3. Nonlinear resistive two-port connected so as to satisfy equations (5)-(7). The current in each bipole has the direction specified by the arrow and voltage is defined by the associated reference direction.

Novel circuit implementation

Memristive diode bridge with LCR filter

F. Corinto and A. Ascoli

MEMORABLE EXHIBITION

PAGE 824 Researchers in Italy have shown that a purely passive circuit, employing already-existing components, can exhibit memristive dynamics. The circuit is composed of an elementary diode bridge and an RLC series circuit, introducing nonlinearity and dynamical behaviour into the system, respectively.

Simple electronic systems can exhibit memristive behaviour

ELECTRONICS LETTERS 5th July 2012 Vol.48 No.14

Novel circuit implementation

1.2

1.2

 $\begin{bmatrix} \beta(x_2 - \alpha x_1) \\ \gamma\left(u - x_1 - 2\ln\left(\frac{x_2 + 2}{2\exp\left(-\frac{u}{2\omega}\right)\cosh\left(\frac{u}{2\omega}\right)}\right) \end{bmatrix}$ **Fig. 3** *Current-voltage characteristics observed in numerical simulations of the mathematical model of the proposed circuit for a sine-wave input with f set to 10 (plot (a)), 100 (plot (b)) and 1000 Hz (plot (c)).*

D1N4148, i.e. $I_S=2.682~nA$ and n=1.836, while $V_T=25~mV$ $R=1.5K\Omega$ $C=4\mu F$ and $L=2.5\mu H$

Potassium-Ion Channel memristor emulator

Figure: First–order voltage–controlled memristor emulator.

Figure: i(t)-v(t) curve of an individual potassium channel with sinusoidal input. The red curve is obtained by integrating the HH equations, while the blue curve is the output from the PSpice implementation of the memristor circuit.

Perspectives

Memristor circuit modeling and nonlinear dynamics in hybrid neuromorphic circuit with memristor-based computing nanoscale device.

> Unconventional Computing Systems

Conclusion

Thanks to:

• The Ministry of Foreign Affairs "Con il contributo del Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese"

• A. Ascoli, S. Kang, K-S. Min, V. Senger, R. Tetzlaff

References (selected pubblications - see complete list at <u>http://personal.delen.polito.it/Fernando.Corinto/</u>):
[1] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff "Memristor Model Comparison", IEEE Circuits and Systems Magazine, vol. 13, no. 2, pp. 89–105, DOI: 10.1109/MCAS.2013.2256272, 2013
[2] F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter, Electronics Letters, 5 July 2012, Volume 48, Issue 14, p.824–825 http://dx.doi.org/10.1049/el.2012.1480, 2012
[3] F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nano-structures, IEEE Trans. on Circ. and Syst.–I, DOI: 10.1109/TCSI.2012.2190563, 2012
[4] F. Corinto, A. Ascoli, and M. Gilli, "Analysis of current-voltage characteristics for memristive elements in pattern recognition systems," Int. J. Circuit Theory Appl., DOI: 10.1002/cta.1804, 2012
[5] F. Corinto, A. Ascoli; M. Gilli, Nonlinear dynamics of memristor oscillators, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, Vol. 58, pp. 1323-1336, ISSN: 1549- 8328, DOI: 10.1109/TCSI. 2010.2097731, 2011