Memristor for bio-inspired computing:
 nonlinear circuits and mathematical models

Fernando CORINTO

fernando.corinto@polito.it
Politecnico di Torino (Italy)

Outline

- Motivation
- Memristor modeling and nonlinear dynamics
- Model comparison
- Influence on initial conditions
- the SIMPLEST (passive) memristor circuit
- Conclusions

DATE workshop: Dresden, March 28, 2014
4th Memristor Symposium, ND (USA), July 28, 2014

Neuromorphic circuits

- The Human Brain Project in EU plans to use a supercomputer to recreate everything known about the human brain - a hugely ambitious goal!
- Leading neuroscientists in the US are now focussed on understanding how the brain works through the Brain Activity Map (BAM) project, but it's difficult to peer deeply enough into a brain to map the activity of every neuron. Because zebrafish embryos are transparent, the task is easier.
- Understand how neurons that make up the brain carry out their functions.

Neuromorphic circuits Technology Review

So the race is on to develop a different kind of chip that more accurately mimics the way the brain works. So-called neuromorphic chips must be built from devices that behave like neurons - in other words they transmit and respond to information sent in spikes rather than in a continously varying voltage.

One reason the brain is so power efficient is that neural spikes charge only a small fraction of a neuron as they travel. By contrast, conventional chips keep each and every transmission line at a certain voltage all the time.

Clearly, recent advancements in memristor technology and spintronics are making possible entirely new ways to design chips. However, there is a long way to go before synthetic systems can begin to match the capability of natural ones.

Beyond Moore's Law

Science and Engineering

 Beyond Moore's Law| Device | Entity | Properties | | |
| :--- | :--- | :--- | :---: | :---: |
| | | Control Variable | State Variable | Output Variable |
| FET - Novel Materials (III-V,
 Ge, carbon-based, etc.) | Electron | Charge | Charge | Charge |
| SpinFET | Electron | | Spin | Charge |
| Spin-Torque | Electron | Spin | Spin | Charge |
| Spin-Wave | Electron | Spin Waves | Spin | Charge
 Photon |
| Tunneling Transistor | Electron | Charge | Charge | Charge |
| Molecular switch | Electron or
 Atoms | Charge | Charge | Charge |
| NEMS | Atoms | Charge | Position | Charge |
| Atomic Switch | Atoms | Charge | Position | Electron |
| Memristor | Atoms | Charge | Charge, | Electron |
| Magnetic Cellular Automata | FM Domain | Magnetic dipole | Spin | FM Domain |
| Moving Domain Wall | FM Domain | Magnetic Dipole | Spin | FM Domain |
| Multi-Ferroic
 Junction Tunnel | FM Domain | Spin | Charge | Electron |
| Optical or Plasmonics | Atoms
 Electrons | Charge | Optical
 Density | Photons |
| Thermal Transistor | Phonons | Thermal Energy | Temperature | Phonons |

Taxonomy for Candidate Information Processing Devices

Breakthrough in Memristor

- non-volatile memories \rightarrow low-power, high-density
- neuromorphic systems \rightarrow Memristor mimics biological synapse
- As in a living creature the weight of a synapse is adapted by the ionic flow through it, so the conductance of a memristor is adjusted by the flux across or the charge through it depending on its controlling source.
- novel computer architectures \rightarrow memory and process coexist
- Memristor will play a fundamental role in the realization of novel neuromorphic computing architectures merging memory and computation. This fundamental step will begin to bridge the main divide between biological computation and traditional computation, because memristor permits to bring data close to computation (the way biological systems do) and they use very little power to store that information.

Fundamentals of memristor

- non-volatile memories
- neuromorphic systems
- computer architectures
$\rightarrow \quad$ low-power, high-density
$\rightarrow \quad$ memristors mimics synapses
$\rightarrow \quad$ memory and processing coexist

Important issues:

- full understanding of nonlinear dynamics
- modeling

Memristor modeling

and

Nonlinear dynamics

What is a MEMRISTOR?

Memristor (L. O. Chua, 1971)

Memristor-The Missing Circuit Element

(a)
$f_{R}(v(t), i(t))=0$
$f_{C}(v(t), q(t))=0$
$f_{L}(\varphi(t), i(t))=0$
$f_{M}(\varphi(t), q(t))=0$

Charge-controlled "ideal" memristor
$\varphi(t)=f(q(t)) \Rightarrow v(t)=M(q(t)) i(t)$
(memristance) $M(q(t))=\frac{d f(q)}{d q}$

(b)

(c)

General memristive one-port (Chua and Kang, 1976)

$$
v(t)=M(\mathbf{w}(t)) i(t), \quad \mathbf{w} \in R^{n}
$$

$$
\frac{d \mathbf{w}(t)}{d t}=h(\mathbf{w}(t), i(t), t)
$$

Main properties:

Recently, "Memristors" and "Memristive Devices" have been used interchangeably

■ passivity criterion $\Rightarrow M(\mathbf{w}(t)) \geq 0$
$\boxed{\square}$ non-volatile memory property $\Rightarrow h(\mathbf{w}(t), 0, t)=0, \quad \forall t$
■ v-i pinched hysteresis loop (Lissajous figure) for any periodic source. The pinched hysteresis loop shrinks continuously as the frequency increases

General memristive one-port (Chua and Kang, 1976)

Identical zero-crossing
property

Fig. 5. Both $v(t)$ and $i(t)$ of a memristor with $0<R(\mathbf{x})<$ ∞ and $0<G(\mathbf{x})<\infty$ must have identical zero crossings.

Frequency-dependent pinched hysteresis loop property

Pinched hysteresis loop fingerprint

Example of a memristor pinched hysteresis loop.

Memory effects in complex materials and nanoscale systems

HP Memristor (S. Williams et al, 2008)

HP Memristor
 (S. Williams et al, 2008)

Electrons: $\quad \nabla \cdot\left(-e n(x) \mu_{\mathrm{n}} \nabla \varphi_{\mathrm{n}}(x)\right)=0$

$$
\begin{array}{rc}
\text { Holes: } & \nabla \cdot\left(e p(x) \mu_{\mathrm{p}} \nabla \varphi_{\mathrm{p}}(x)\right)=0 \\
\text { Ions: } & -\nabla \cdot\left(-e D_{\mathrm{i}} \nabla N_{\mathrm{D}}(x)-e N_{\mathrm{D}}(x) \mu_{\mathrm{i}} \mathrm{E}_{0} \sinh \left[\nabla \varphi(x) / \mathrm{E}_{0}\right]\right)=e \partial N_{\mathrm{D}}(x) / \partial t \\
\text { Poisson: } & -\varepsilon \varepsilon_{0} \Delta \varphi(x)=e\left[p(x)-n(x)+f_{\mathrm{D}}(x) N_{\mathrm{D}}(x)-f_{\mathrm{A}}(x) N_{\mathrm{A}}\right]
\end{array}
$$

Memristor mathematical model (HP model)

First memristor model

$$
\left\{\begin{array}{l}
\frac{d w(t)}{d t}=\mu \frac{R_{o n} \frac{w(t)}{D} i(t)}{w(t)} \\
v(t)=\left(R_{o n} \frac{w(t)}{D}+R_{o f f}\left(1-\frac{w(t)}{D}\right)\right) i(t)
\end{array}\right.
$$

Expression for $w(t)$ as function of $q(t)$:

$$
w(t)=w\left(t_{0}\right)+\mu \frac{R_{o n}}{D}\left(q(t)-q\left(t_{0}\right)\right)
$$

For $R_{\text {on }} \ll R_{\text {off }}$ memristance expressed by

$$
M(q(t))=R_{\text {off }}\left(1-\frac{w\left(t_{0}\right)}{D}-\frac{\mu R_{o n}}{D^{2}}\left(q(t)-q\left(t_{0}\right)\right)\right)
$$

Memristor mathematical model

$$
\begin{aligned}
i(t) & =W(x(t)) v(t) \\
W(x(t)) & =\frac{G_{o n} G_{o f f}}{G_{o n}-\Delta G x(t)} \quad \text { memductance }
\end{aligned}
$$

with $\Delta G=G_{o n}-G_{o f f}$, where $G_{o n}$ and $G_{o f f}$ indicate the device memductance respectively in the fully-conductive and fully-insulating state (i.e. as $x(t)$ sets to 1 and 0 respectively),

$$
\begin{array}{r}
\frac{d x(t)}{d t}=\frac{\eta}{i_{0}} W(x(t)) v(t) F(x(t), \eta v(t), p) \\
\text { window function }
\end{array}
$$

Memristor mathematical model

- to account for nonlinear effects on the ionic transport Window funlction. $\begin{aligned} & \text { (} p \in \mathbf{N}_{+} \text {modulates the degree of such nonlinearities); }\end{aligned}$
$(a): F_{J}, p=\{1,3,10\} \quad(b): F_{B}, p=2, \eta=1 \quad(c): \tilde{F}, \eta=1$

$$
\begin{aligned}
& F_{J}(x, p)=1-(2 x-1)^{2 p} \quad \forall \eta v \\
& F_{B}(x, \eta v, p)= \begin{cases}1-x^{2 p} & \eta v>0 \\
1-(x-1)^{2 p} & \eta v \leq 0\end{cases} \\
& F(x, v)=\left\{\begin{array}{l}
1 \text { if } C_{1} \text { holds }, \\
0 \text { if } C_{2} \text { or } C_{3} \text { holds. }
\end{array}\right. \\
& C_{1}=\left\{x \in(0,1) \text { or }\left(x=0 \text { and } v>v_{t h, 0}\right)\right. \\
& C_{2}=\left\{x=0 \text { and } v \leq v_{t h, 0}\right\}, \\
& C_{3}=\left\{x=1 \text { and } v \geq-v_{t h, 1}\right\},
\end{aligned}
$$

F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.-I, 2012, DOI: 10.1109/ TCSI.2012.2190563

Memristor mathematical model Boundary Condition-based Model (BCM)

> [3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, 2008.

> It may be theoretically demonstrated (see Proposition 3 in [1]) that boundary conditions may be tuned so as to obtain either singlevalued or multi-valued state-flux characteristics.

Figure 8. Memductance-flux characteristics for the memristor modeled by (1)-(2) $\left(x(0)=0.1, G_{o n}=10^{-2} S\right)$, using proposed window (39) and voltage source (6) with $\beta=0.01$. Blue curve: $v_{0}=1 V, G_{\text {on }} G_{\text {off }}^{-1}=60$, $v_{t h}=0 V$ (note the similarity to red curve in Fig. 4). Black curve: $v_{0}=2 V$, $G_{\text {on }} G_{o f f}^{-1}=25, v_{t h}=0 V$. Red curve: $v_{0}=1 V, G_{o n} G_{o f f}^{-1}=60$, $v_{t h}=0.5 v_{0} V$ (note the similarity to red curve in Fig. 2). For each case, points $P^{\prime}=\left(\varphi\left(t_{\alpha, 1}\right), G_{o n}\right)$ and $Q^{\prime}=\left(\varphi\left(t_{\beta}\right), G_{o n}\right)$ are highlighted to show whether or not one of conditions for single-valuedness, i.e. (45), is fulfilled. Here $P^{\prime} \equiv Q^{\prime}$ for the red curve only.

[^0]
Memristor mathematical model Boundary Condition-based Model (BCM)

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, 2008.

Figure 9. Current-voltage characteristics corresponding to the memductanceflux relations of Fig. 8. Blue curve is similar to red curve in Fig. 5 and to Fig. 3(a) from [3]. Black curve is similar to Fig. 3(b) from [3]. Red curve is similar to red curve in Fig. 3 and to Fig. 3(c) from [3].

[^1]
Memristor mathematical model Boundary Condition-based Model (BCM)

Table I

CAPABILITY OF EMULATION OF VARIOUS MEMRISTOR BEHAVIORS FROM [3] FOR VARIOUS MODELS PROPOSED IN LITERATURE.

Memristor $i-v$ response from [3]	Linear	Joglekar's	Biolek's	BCM
Fig. 2(b) in [3]	\checkmark	\checkmark	\checkmark	Fig. 6
Fig. 2(c) in [3]	\checkmark	\checkmark	\checkmark	Fig. 7
Fig. 3(a) in [3]	X	X	\checkmark	Fig. 9 (blue)
Fig. 3(b) in [3]	X	X	\checkmark	Fig. 9 (black)
Fig. 3(c) in [3]	X	\checkmark	X	Fig. 9 (red)

BCM model captures the $i-v$ response of other memristor nanostructures as well (see [1])
F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.-I, 2012, DOI: 10.1109/TCSI.2012.2190563

Memristor Model Comparison

$$
\begin{aligned}
\frac{d w}{d t}= & f_{\text {off }} \sinh \left(\frac{|i|}{i_{\text {off }}}\right) \\
& \exp \left(-\exp \left(\frac{w-a_{\text {off }}}{w_{c}}-\frac{|i|}{b}\right)-\frac{w}{w_{c}}\right)
\end{aligned}
$$

for $i>0$, while it is

$$
\begin{aligned}
& \frac{d w}{d t}=-f_{\text {on }} \sinh \left(\frac{|i|}{i_{\text {on }}}\right) \\
& \quad \exp \left(-\exp \left(\frac{a_{\text {on }}-w}{w_{c}}-\frac{|i|}{b}\right)-\frac{w}{w_{c}}\right)
\end{aligned}
$$

Alon Ascoli, Fernando Corinto, Vanessa singer, and Ronald Tetzlaff

| Table 4.
 Comparison among the memristor models. For sake
 of brevity we use the acronym BM to indicate Biolek's
 Memristor. |
| :--- | BM \quad BCM \quad Team \quad| Test 1 | - | \checkmark | - |
| :--- | :--- | :--- | :--- |
| Test 2-a | \checkmark | \checkmark | \checkmark |
| Test 2-b | - | - | \checkmark |
| Test 2-c | \checkmark | \checkmark | - |
| Test 3 | \# | \# | \# |

Figure: Test 1 aims to identify thich memristor model fits better the $i-v$ characteristic observed in the Pickett model under a particular triangular excitation. Test 2 memristor-based nonlinear circuit with periodic behavior (a) frequency of the limit cycle; b) frequency spectrum of the memristor voltage; c) transitory response due to an external pulse). Test 3 chaotic memristor-based non- linear circuit (appearance of the chaotic attractor).

Memristor modeling

Messagge to take home: Reliable mathematical and physicallybased circuit models are fundamental to develop neuromorphic hybrid systems!

Electrons:
Holes: Ions:
Poisson:

$$
\begin{aligned}
& \nabla \cdot\left(-e n(x) \mu_{\mathrm{n}} \nabla \varphi_{\mathrm{n}}(x)\right)=0 \\
& \nabla \cdot\left(e p(x) \mu_{\mathrm{D}} \nabla \varphi_{\mathrm{D}}(x)\right)=0 \\
& -\nabla \cdot\left(-e D_{\mathrm{i}} \nabla N_{\mathrm{D}}(x)-e N_{\mathrm{D}}(x) \mu_{\mathrm{i}} \mathrm{E}_{\mathrm{o}} \sinh \left[\nabla \varphi(x) / \mathrm{E}_{\mathrm{D}}\right]\right)=e \partial N_{\mathrm{D}}(x) / \partial t \\
& \quad-\varepsilon \varepsilon_{0} \Delta \varphi(x)=e\left[p(x)-n(x)+f_{\mathrm{D}}(x) N_{\mathrm{D}}(x)-f_{\mathrm{A}}(x) N_{\mathrm{A}}\right]
\end{aligned}
$$

$$
\begin{aligned}
v(t) & =M(x, i) i \\
\frac{d x(t)}{d t} & =f(x, i) \\
x(0) & =x_{0} \in R^{n}
\end{aligned}
$$

Nonlinear dynamics

Memristor:

 The role of Initial ConditionsAnalysis of the memristive current-voltage behavior, i.e. make a rigorous classification of all possible current-voltage characteristics for a sine-wave voltage-driven memristive element on the basis of amplitude, angular frequency and time history of the oscillating voltage waveform across the device

Memristor:

Resistance switching memories are memristors

Analysis of the memr ${ }^{\text {te }}$ behavior, i.e. make a of all possible currentfor a sine-wave volta element on the basis of amplitude, angular frequency and time history of the oscillating voltage waveform across the device

Leon Chua

Abstract All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive "fingerprint" characterized by a pinched hysteresis loop confined to the first and the third quadrants of the $v-i$ plane whose contour shape in general changes with both the amplitude and frequency of any periodic "sine-wave-like" input voltage source, or current source. In par-

Memristor:
 The role of Initial Conditions

- voltage-controlled memristor

Memristor: The role of Initial Conditions

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_{c}<\varphi(0)<\varphi_{c}-\frac{2 E}{\omega}$	weakly-resistive behavior
$\varphi(0)=-\varphi_{c}$	limit-subcase 2, weakly-resistive behavior
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

Memristor: The role of Initial Conditions

Memristor: The role of Initial Conditions

Memristor: The role of Initial Conditions

Memristor: The role of Initial Conditions

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_{c}<\varphi(0)<\varphi_{c}-\frac{2 E}{\omega}$	weakly-resistive behavior
$\varphi(0)=-\varphi_{c}$	limit-subcase 2, weakly-resistive behavior
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

Memristor: The role of Initial Conditions

Memristor: The role of Initial Conditions

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_{c}<\varphi(0)<\varphi_{c}-\frac{2 E}{\omega}$	weakly-resistive behavior
$\varphi(0)=-\varphi_{c}$	limit-subcase 2, weakly-resistive behavior
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

Memristor: The role of Initial Conditions

Memristor: The role of Initial Conditions

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}$	limit-subcase 1, weakly-resistive behavior
$-\varphi_{c}<\varphi(0)<\varphi_{c}-\frac{2 E}{\omega}$	weakly-resistive behavior
$\varphi(0)=-\varphi_{c}$	limit-subcase 2, weakly-resistive behavior
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

Memristor: The role of Initial Conditions

Memristor:
 The role of Initial Conditions

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with cw rotation for $v>0$
$-\varphi_{c}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=-\varphi_{c}$	the only limit-case for $\frac{E}{\omega}=\varphi_{c}$, weaklyresistive behavior
$\varphi(0)=-\varphi_{c}$	limit-subcase 1 for $\frac{E}{\omega} \neq \varphi_{c}$, atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	cut atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=-\frac{E}{\omega}$	limit-subcase 2 for $\frac{E}{\omega} \neq \varphi_{c}$, nonlinearlyresistive behavior
$\varphi_{c}-2 \frac{E}{\omega}<\varphi(0)<-\frac{E}{\omega}$	cut atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=\varphi_{c}-2 \frac{E}{\omega}$	limit-subcase 3 for $\frac{E}{\omega} \neq \varphi_{c}$, atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<\varphi_{c}-2 \frac{E}{\omega}$	atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	classical bow-tie with ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

Flux initial value	Type of behavior
$\varphi(0) \geq \varphi_{c}$	highly-resistive behavior
$-\varphi_{c}<\varphi(0)<\varphi_{c}$	atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=-\varphi_{c}$	limit-subcase 1 for $\frac{E}{\omega}=2 \varphi_{c}$, classical bow-tie with $c w$ rotation for ${ }^{\omega}>0$
$-\frac{E}{\omega}=-2 \varphi_{c}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}=-\varphi_{c}$	cut atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=-\frac{E}{\omega}=-2 \varphi_{c}$	limit-subcase 2 for $\frac{E}{\omega}=2 \varphi_{c}$, nonlinearlyresistive behavior
$-\varphi_{c}-\frac{E}{\omega}=-3 \varphi_{c}<\varphi(0)<-\frac{E}{\omega}=-2 \varphi_{c}$	cut atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}=-3 \varphi_{c}$	limit-subcase 3 for $\frac{E}{\omega}=2 \varphi_{c}$, classical bow-tie with ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}$	limit-subcase 1 for $\frac{E}{\omega} \neq 2 \varphi_{c}$, atypical bow-tie with extended b -slope side and cw rotation for $v>0$
$\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\varphi_{c}$	cut atypical bow-tie with extended b-slope side and cw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{E}{\omega}$	cut classical bow-tie, cw rotation for $v>0$
$-\frac{E}{\omega}<\varphi(0)<\varphi_{c}-\frac{E}{\omega}$	cut atypical bow-tie with extended a-slope side and cw rotation for $v>0$
$\varphi(0)=-\frac{E}{\omega}$	limit-subcase 2 for $\frac{E}{\omega} \neq 2 \varphi_{c}$, nonlinearlyresistive behavior
$-\varphi_{c}-\frac{E}{\omega}<\varphi(0)<-\frac{E}{\omega}$	cut atypical bow-tie with extended a-slope side and ccw rotation for $v>0$
$\varphi(0)=-\varphi_{c}-\frac{E}{\omega}$	cut classical bow-tie with ccw rotation for $v>$ 0
$\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<-\varphi_{c}-\frac{E}{\omega}$	cut atypical bow-tie with extended b-slope side, ccw rotation for $v>0$
$\varphi(0)=\varphi_{c}-\frac{2 E}{\omega}$	limit-subcase 3 for $\frac{E}{\omega} \neq 2 \varphi_{c}$, atypical bowtie with extended b-slope side, ccw rotation for $v>0$
$-\varphi_{c}-\frac{2 E}{\omega}<\varphi(0)<\varphi_{c}-2 \frac{E}{\omega}$	atypical bow-tie with extended b-slope side and ccw rotation for $v>0$
$\varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega}$	highly-resistive behavior

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Memristor: The role of Initial Conditions

Type of behavior

$$
\begin{array}{|c|l|}
-\psi_{c}-\bar{\omega}<\psi(\cup)<-\psi_{c}-\bar{\omega} & \begin{array}{l}
\text { auypıai vuw-ue wiun exuenueu } \\
\text { and ccw rotation for } v>0
\end{array} \\
\hline \varphi(0) \leq-\varphi_{c}-\frac{2 E}{\omega} & \text { highly-resistive behavior siue } \\
\hline
\end{array}
$$

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in

Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Memristor:
 The role of Initial Conditions

64-
F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in

Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Memristor: The role of Initial Conditions

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in

Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Memristor: The role of Initial Conditions

F. Corinto, A. Ascoli, M. Gilli, "Analysis of Current-Voltage Characteristics for Memristive elements in

Pattern Recognition Systems", Int. J. Circ. Th. and Appl. (2012)

Memristor:

The role of nonlinear dynamics

Messagge to take home:
Be carefull in applications!
The i-v curve observed in memristor devices depends on the INPUT and the INITIAL CONDITION as well.

$$
\begin{aligned}
v(t) & =M(x, i) i \\
\frac{d x(t)}{d t} & =f(x, i) \\
x(0) & =x_{0} \in R^{n}
\end{aligned}
$$

Memristor oscillators

Corinto, Ascoli and Gilli "Nonlinear dynamics of memristor oscillators", IEEE Trans. on Circuits and

$$
i_{m}=W\left(\varphi_{m}\right) v=\frac{d q_{m}\left(\varphi_{m}\right)}{d \varphi_{m}} \frac{d \varphi_{m}}{d t}
$$

$W\left(\varphi_{m}\right)$: memory conductance

Memristor oscillator

With $R_{1}<0$ let

$$
\alpha=C_{1}^{-1}, \beta=-R_{1} L_{1}^{-1}, \xi=L_{1}^{-1}, \quad x_{1}=\hat{\varphi}_{1}, \quad x_{2}=\tilde{q}_{1}
$$

State equations are:

$$
\left\{\begin{array}{l}
\frac{d}{d t} x_{1}=\alpha x_{2}-\alpha \boldsymbol{q}_{m}\left(x_{1}\right) \\
\frac{d}{d t} x_{2}=-\xi x_{1}+\beta x_{2}
\end{array}\right.
$$

where

$$
q_{m}\left(x_{1}\right)=b x_{1}+(a-b) n\left(x_{1}\right), \quad n\left(x_{1}\right)=\frac{1}{2}\left(\left|x_{1}+1\right|-\left|x_{1}-1\right|\right)
$$

Memristor oscillators

Corinto, Ascoli and Gilli "Nonlinear dynamics of memristor oscillators", IEEE Trans. on Circuits and
Systems-I, vol. 58, no. 6, pp. 1323-1336, 2011

Isoline $H b(a, b)=0$ of the surface for $\alpha=1.25$ and $\beta=\xi=1$ (blue curve)
In blue: isoline point $(a, b)=(0.5568,1.5)$

Memristor chaotic circuits

> anti - parallel combination of memristive elements

$$
\frac{d x_{5}}{d \tilde{\tau}}=\frac{\eta_{2}}{\tilde{i}_{0}} W\left(x_{5}\right) x_{1} F\left(x_{5}, \eta_{2} W\left(x_{5}\right) x_{1}, p\right)
$$

$(a): \tilde{F}, v_{t h}=0$

$(b): F_{B}, p=10$

Setting circuit element values to $G=3.3 \mathrm{mS}, G_{N 1}=$ $-0.4 m S, G_{N 2}=-1.2 m S, C_{1}=50 n F, C_{2}=37 n F$ and $L=100 \mathrm{mH}$, system parameters are numerically given by $\tilde{\alpha}=0.74, \tilde{\beta}=0.0333$ and $\gamma=0.12$. Further $G_{o f f}=0.06 \mathrm{mS}$ and $G_{o n}=1.9 \mathrm{mS}$.

Memristor-based Hodgkin-Huxley circuit

Intracellular medium
Table 3. Symbol and relevant equations defining the Potassium Ion-Channel Memristor.

Table 4. Symbol and relevant equations defining the Sodium Ion-Channel Memristor.

International Journal of Bifurcation and Chaos, Vol. 22, No. 3 (2012) 1230011 (48 pages) © World Scientific Publishing Company
DOI: 10.1142/S021812741230011X
HODGKIN-HUXLEY AXON IS MADE OF MEMRISTORS

LEON CHUA
VALERY SBITNEV
HYONGSUK KIM

Memristor-based Hodgkin-Huxley circuit

Memristor-based neural circuits

Fernando Corinto
Sung-Mo, "Steve" Kang
Extracellular medium

Fig. 2. Novel implementation of a memristor based on a special class of (passive) nonlinear resistive two-port connected to a nonlinear dynamic one-port.

Fig. 3. Nonlinear resistive two-port connected so as to satisfy equations (5)-(7). The current in each bipole has the direction specified by the arrow and voltage is defined by the associated reference direction.

Novel circuit implementation

Memristive diode bridge with LCR filter

F. Corinto and A. Ascoli

MEMORABLE EXHIBITION

PAGE 824 Researchers in Italy have shown that a purely passive circuit, employing already-existing components, can exhibit memristive dynamics. The circuit is composed of an elementary diode bridge and an RLC series circuit, introducing nonlinearity and dynamical behaviour into

Simple electronic systems can exhibit memristive behaviour

ELECTRONICS LETTERS 5th July 2012 Vol. 48 No. 14

Novel circuit implementation

$$
i_{g}=\left(i_{L}+2 I_{S}\right) \tanh \left(\frac{v_{g}}{2 n V_{T}}\right)
$$

$x_{1}=v\left(V_{T}\right)^{-1}$ and $x_{2}=i_{L}\left(I_{S}\right)^{-1}$

$$
\left[\begin{array}{c}
\beta\left(x_{2}-\alpha x_{1}\right) \\
\gamma\left(u-x_{1}-2 \ln \left(\frac{x_{2}+2}{2 \exp \left(-\frac{u}{2 n}\right) \cosh \left(\frac{u}{2 n}\right)}\right)\right)
\end{array}\right]
$$

Fig. 3 Current-voltage characteristics observed in numerical simulations of the mathematical model of the proposed circuit for a sine-wave input with f set to 10 (plot (a)), 100 (plot (b)) and 1000 Hz (plot (c)).
$D 1 N 4148$, i.e. $I_{S}=2.682 n A$ and $n=1.836$, while $V_{T}=25 \mathrm{mV}$ $R=1.5 K \Omega \quad C=4 \mu F$ and $L=2.5 \mu H$

Potassium-Ion Channel memristor emulator

Figure: First-order voltage-controlled memristor emulator.

Figure: $i(t)-v(t)$ curve of an individual potassium channel with sinusoidal input. The red curve is obtained by integrating the HH equations, while the blue curve is the output from the PSpice implementation of the memristor circuit.

Perspectives

Memristor circuit modeling and nonlinear dynamics in
hybrid neuromorphic circuit with memristor-based computing nanoscale device.

Unconventional Computing Systems

Conclusion

Thanks to:

- The Ministry of Foreign Affairs "Con il contributo del Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese"

\author{

- A. Ascoli, S. Kang, K-S. Min, V. Senger, R. Tetzlaff
}

References (selected pubblications - see complete list at http://personal.delen.polito.it/Fernando.Corinto/): [1] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff "Memristor Model Comparison",IEEE Circuits and Systems Magazine, vol. 13, no. 2, pp. 89-105, DOI: 10.1109/MCAS.2013.2256272, 2013
[2] F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter, Electronics Letters, 5 July 2012, Volume 48, Issue 14, p.824-825 http:/ / dx.doi.org/10.1049/el.2012.1480, 2012
[3] F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nano-structures, IEEE Trans. on Circ. and Syst.-I, DOI: 10.1109/ TCSI.2012.2190563, 2012
[4] F. Corinto, A. Ascoli, and M. Gilli, "Analysis of current-voltage characteristics for memristive elements in pattern recognition systems," Int. J. Circuit Theory Appl., DOI: 10.1002 / cta.1804, 2012
[5] F. Corinto, A. Ascoli; M. Gilli, Nonlinear dynamics of memristor oscillators, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, Vol. 58, pp. 1323-1336, ISSN: 1549-8328, DOI: 10.1109/TCSI. 2010.2097731, 2011

[^0]: F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.-I, 2012, DOI: 10.1109/ TCSI.2012.2190563

[^1]: F. Corinto and A. Ascoli, 'A boundary condition-based approach to the modeling of memristor nano-structures', IEEE Trans. on Circ. and Syst.-I, 2012,

 DOI: 10.1109 / TCSI.2012.2190563

