
Memristive stateful logic

Eero Lehtonen1, Jussi Poikonen2

1University of Turku, Finland

2Aalto University, Finland

January 22, 2014



Outline

1 Basic principle of memristive stateful logic

2 Generalized memristive stateful logic

3 Parallelization to a crossbar

4 Segmentation



Introduction

• In the following, we discuss memristive stateful logic

• This means, in essence, logical operations between the
persistent binary states of memristors

• This talk is based mainly on our chapter Memristive
stateful logic in the forthcoming book Memristor Networks
(Springer).



Principle of elementary stateful logic operations

• Assume a circuit where
two vertical (nano)wires
are connected by
memristors to a horizontal
(nano)wire.

• The depicted voltages are
chosen as follows:
0 < vcond < VTH,
vset > VTH,
vset − vcond < VTH, where
VTH is the programming
threshold voltage of the
memristors.



Practical considerations

• The resistor R0 enables
voltage division, where the
voltage at the horizontal
wire varies according to
the memristances of m1

and m2.

• This voltage will also
change when m2 is
programmed, possibly
interrupting the
programming.

• Adding capacitance may
help, but will reduce
operation speed.



Practical considerations

• Another problem with
passive voltage division is
that there is a constant
current path to ground.

• Using an active CMOS
keeper circuit will reduce
energy consumption, but
also increase area
overhead.

• With a keeper circuit, the
operation is divided into a
read phase and a
programming phase.



Generalized stateful operations

• The figure shows a generalized stateful logic operation S
yielding m4 = S(OR(m1,m2),m4) and
m5 = S(OR(m1,m2),m5).

• The vertical wires of memristors not participating are
connected to drivers in high impedance state



Obtainable logical operations

p = mi1 ∨ . . . ∨mik q = mj p→ q p �← q p ∧ q p ∨ q
0 0 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 1 1 0 1 1

Table: Truth tables of the logical operations available with generalized
memristive stateful logic. Note that p → q ≡ OR(¬p, q) and
p �← q ≡ AND(¬p, q).

• It can also be assumed that any memristor can be reset at
will

• Any Boolean expression can be synthesized in many ways
using combinations of these operations



Parallel memristive stateful logic in a crossbar

Figure: A stateful logic operation performed in parallel on all rows over
the second and third memristors from the left.



The CMOL solution to implementing parallel logic



Parallel stateful logic

• In the following, parallel column operations are presented.
Row operations are performed similarly, using reverse
polarities of voltages

• To avoid sneak current paths, rectifying memristors are
assumed (only positive current through memristors)

• This limits the availability of operations to implication and
converse non-implication



NAND of columns

p̄ q̄

0

0

0

0

0

1

0

1

1



NAND of columns

p̄ q̄

0

0

0

1

0

1

1 1

1

NAND(p̄, q̄)



NAND (1st implication)

0

0

0

0

0

1

0

1

1

HZ

HZ

vcond HZ HZ

HZ



NAND (1st implication)

0

00

0

1

0

1

1

HZ

HZ

vcond HZ

HZ

vset

1



NAND (2nd implication)

0

00

0

1

0

1

1

HZ

HZ

HZ

1

HZ vcond HZ



NAND (2nd implication)

0

0

0

1

0

1

1

HZ

HZ

HZ

1

HZ vcond vset

1



NAND of columns

p̄ q̄

0

0

0

1

0

1

1 1

1

NAND(p̄, q̄)



XOR of columns

0

0

0

0

0

0

0

0

0

p̄ q̄

0

0

1

0

1

1



XOR of columns

p̄ q̄

0

0

1

0

1

1

0

0

0 0

0

1 1

11

XOR(p̄, q̄)



XOR (1st implication)

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

vcond HZ HZ HZ HZ



XOR (1st implication)

0

0

0

0

0

0

0

0

1

0

1

1

vcond HZ HZ HZ

0

0

1

vset



XOR (2nd implication)

0

0

0

0

0

0

0

0

1

0

1

1

HZ HZ

0

0

1

HZvcondHZ



XOR (2nd implication)

0

0

0

0

0

1

0

1

1

HZ

0

0

HZvcondHZ

0

1

1

vset

1



XOR (3rd implication)

0

0

0

0

0

1

0

1

1

HZ

0

0

HZ

0

1

11

HZvcond vcond



XOR (3rd implication)

0

0

0

0

0

1

0

1

1

0

0

HZ

0

1

11

HZvcond vcond vset



XOR (4th implication)

0

0

0

0

0

1

0

1

1

0

0

0

1

11

HZvcondvcondHZ HZ



XOR (4th implication)

0

0

1

0

1

1

0

0

0

1

11

vcondvcondHZ HZ vset

0

0

1



XOR of columns

p̄ q̄

0

0

1

0

1

1

0

0

0 0

0

1 1

11

XOR(p̄, q̄)



Vector-parallel operations

Parallelization improves efficience. But...

• Only one operation at a time

• Capacitance of a wire increases with the number of
memristors

• Possible solution: segmenting of wires



Vector-parallel operations

Parallelization improves efficience. But...

• Only one operation at a time

• Capacitance of a wire increases with the number of
memristors

• Possible solution: segmenting of wires



Segmenting wires

0

0

1

0

1

1

0

0

0

1

11

vcond HZvcond HZ



Segmenting wires

0

0

0

1

11

vcond HZ

0

0

1

0

1

1

vcond HZ



Segmenting wires

vcond vcondvset vset

0

1

0

1

1

0

0 1

111

1



Segmenting wires

0

1

0

1

1

0

0 1

111

1



Vector-parallel operations

Parallelization improves efficience. But...

• Only one operation at a time

• Large capacitance when many memristors on a wire

• Possible solution: segmenting of wires

• Implementation: memristive, nanowire transistors,
CMOS...?



Vector-parallel operations

Parallelization improves efficience. But...

• Only one operation at a time

• Large capacitance when many memristors on a wire

• Possible solution: segmenting of wires

• CMOS implementation: local operations should be fast (10
- 100 MHz)

• For example, 1000 rows x 1000 cols x 10e6 ops/s



Content-addressable memory

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 1 0



Content-addressable memory

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 1 ←−
0 0 1 1 0 0 1 1 0



CAM

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



CAM (1st implication)

vcond 1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



CAM (1st implication)

vcond 1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0

vset 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0

vset 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0

vset 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



CAM (wire segmenting)

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



CAM (XOR of search and memory vectors)

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 1 0 0 1 1 0 0 1 0



CAM (Multi-input column-wise implication)

vc vc vc vc vc vc vc vc vs

1 0 1 0 1 0 1 0 x
1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 0 1 1 0 0 1 1 0 0 ←−
1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 0 0 0 0 0 0 0 0 1 ←−
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

XOR 1 0 0 1 1 0 0 1 0 ←−



Conclusion

In this presentation...

• Stateful logic operations

• Parallelization into a crossbar

• Wire segmenting: independent operations

• Future work: massively parallel stateful logic



Conclusion

In this presentation...

• Stateful logic operations

• Parallelization into a crossbar

• Wire segmenting: independent operations

• Future work: massively parallel stateful logic



Conclusion

In this presentation...

• Stateful logic operations

• Parallelization into a crossbar

• Wire segmenting: independent operations

• Future work: massively parallel stateful logic



Conclusion

In this presentation...

• Stateful logic operations

• Parallelization into a crossbar

• Wire segmenting: independent operations

• Future work: massively parallel stateful logic


	Basic principle of memristive stateful logic
	Generalized memristive stateful logic
	Parallelization to a crossbar
	Segmentation

